Solve for f
\left\{\begin{matrix}f=-\frac{u_{t}}{uu_{x}}\text{, }&u_{x}\neq 0\text{ and }u\neq 0\\f\in \mathrm{R}\text{, }&\left(u_{x}=0\text{ or }u=0\right)\text{ and }u_{t}=0\end{matrix}\right.
Solve for u
\left\{\begin{matrix}u=-\frac{u_{t}}{fu_{x}}\text{, }&u_{x}\neq 0\text{ and }f\neq 0\\u\in \mathrm{R}\text{, }&\left(u_{x}=0\text{ or }f=0\right)\text{ and }u_{t}=0\end{matrix}\right.
Share
Copied to clipboard
fuu_{x}=-u_{t}
Subtract u_{t} from both sides. Anything subtracted from zero gives its negation.
uu_{x}f=-u_{t}
The equation is in standard form.
\frac{uu_{x}f}{uu_{x}}=-\frac{u_{t}}{uu_{x}}
Divide both sides by uu_{x}.
f=-\frac{u_{t}}{uu_{x}}
Dividing by uu_{x} undoes the multiplication by uu_{x}.
fuu_{x}=-u_{t}
Subtract u_{t} from both sides. Anything subtracted from zero gives its negation.
fu_{x}u=-u_{t}
The equation is in standard form.
\frac{fu_{x}u}{fu_{x}}=-\frac{u_{t}}{fu_{x}}
Divide both sides by fu_{x}.
u=-\frac{u_{t}}{fu_{x}}
Dividing by fu_{x} undoes the multiplication by fu_{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}