Solve for v_6
v_{6}=\frac{\sqrt{2}u_{2}}{4}
Solve for u_2
u_{2}=2\sqrt{2}v_{6}
Share
Copied to clipboard
u_{2}=2\sqrt{2}v_{6}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}v_{6}=u_{2}
Swap sides so that all variable terms are on the left hand side.
\frac{2\sqrt{2}v_{6}}{2\sqrt{2}}=\frac{u_{2}}{2\sqrt{2}}
Divide both sides by 2\sqrt{2}.
v_{6}=\frac{u_{2}}{2\sqrt{2}}
Dividing by 2\sqrt{2} undoes the multiplication by 2\sqrt{2}.
v_{6}=\frac{\sqrt{2}u_{2}}{4}
Divide u_{2} by 2\sqrt{2}.
u_{2}=2\sqrt{2}v_{6}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}