Solve for s
s=\frac{uw^{2}+2uw+576}{u\left(w+2\right)}
w\neq -2\text{ and }u\neq 0
Solve for u
u=-\frac{576}{\left(w+2\right)\left(w-s\right)}
w\neq -2\text{ and }s\neq w
Share
Copied to clipboard
\left(1us-uw\right)\left(w+2\right)=576
Use the distributive property to multiply u by 1s-w.
1usw+2us-uw^{2}-2uw=576
Use the distributive property to multiply 1us-uw by w+2.
1usw+2us-2uw=576+uw^{2}
Add uw^{2} to both sides.
1usw+2us=576+uw^{2}+2uw
Add 2uw to both sides.
suw+2su=uw^{2}+2uw+576
Reorder the terms.
\left(uw+2u\right)s=uw^{2}+2uw+576
Combine all terms containing s.
\frac{\left(uw+2u\right)s}{uw+2u}=\frac{uw^{2}+2uw+576}{uw+2u}
Divide both sides by uw+2u.
s=\frac{uw^{2}+2uw+576}{uw+2u}
Dividing by uw+2u undoes the multiplication by uw+2u.
s=\frac{uw^{2}+2uw+576}{u\left(w+2\right)}
Divide uw^{2}+2uw+576 by uw+2u.
\left(1us-uw\right)\left(w+2\right)=576
Use the distributive property to multiply u by 1s-w.
1usw+2us-uw^{2}-2uw=576
Use the distributive property to multiply 1us-uw by w+2.
suw+2su-uw^{2}-2uw=576
Reorder the terms.
\left(sw+2s-w^{2}-2w\right)u=576
Combine all terms containing u.
\frac{\left(sw+2s-w^{2}-2w\right)u}{sw+2s-w^{2}-2w}=\frac{576}{sw+2s-w^{2}-2w}
Divide both sides by ws-w^{2}+2s-2w.
u=\frac{576}{sw+2s-w^{2}-2w}
Dividing by ws-w^{2}+2s-2w undoes the multiplication by ws-w^{2}+2s-2w.
u=-\frac{576}{\left(w+2\right)\left(w-s\right)}
Divide 576 by ws-w^{2}+2s-2w.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}