Solve for u
u=-\frac{5}{6}\approx -0.833333333
u = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
u^{2}-\frac{2}{3}u=\frac{5}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u^{2}-\frac{2}{3}u-\frac{5}{4}=\frac{5}{4}-\frac{5}{4}
Subtract \frac{5}{4} from both sides of the equation.
u^{2}-\frac{2}{3}u-\frac{5}{4}=0
Subtracting \frac{5}{4} from itself leaves 0.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\left(-\frac{2}{3}\right)^{2}-4\left(-\frac{5}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{2}{3} for b, and -\frac{5}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}-4\left(-\frac{5}{4}\right)}}{2}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}+5}}{2}
Multiply -4 times -\frac{5}{4}.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{49}{9}}}{2}
Add \frac{4}{9} to 5.
u=\frac{-\left(-\frac{2}{3}\right)±\frac{7}{3}}{2}
Take the square root of \frac{49}{9}.
u=\frac{\frac{2}{3}±\frac{7}{3}}{2}
The opposite of -\frac{2}{3} is \frac{2}{3}.
u=\frac{3}{2}
Now solve the equation u=\frac{\frac{2}{3}±\frac{7}{3}}{2} when ± is plus. Add \frac{2}{3} to \frac{7}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
u=-\frac{\frac{5}{3}}{2}
Now solve the equation u=\frac{\frac{2}{3}±\frac{7}{3}}{2} when ± is minus. Subtract \frac{7}{3} from \frac{2}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
u=-\frac{5}{6}
Divide -\frac{5}{3} by 2.
u=\frac{3}{2} u=-\frac{5}{6}
The equation is now solved.
u^{2}-\frac{2}{3}u=\frac{5}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
u^{2}-\frac{2}{3}u+\left(-\frac{1}{3}\right)^{2}=\frac{5}{4}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}-\frac{2}{3}u+\frac{1}{9}=\frac{5}{4}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
u^{2}-\frac{2}{3}u+\frac{1}{9}=\frac{49}{36}
Add \frac{5}{4} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(u-\frac{1}{3}\right)^{2}=\frac{49}{36}
Factor u^{2}-\frac{2}{3}u+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-\frac{1}{3}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
u-\frac{1}{3}=\frac{7}{6} u-\frac{1}{3}=-\frac{7}{6}
Simplify.
u=\frac{3}{2} u=-\frac{5}{6}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}