Solve for u
u=11
u=0
Share
Copied to clipboard
u^{2}-11u=0
Subtract 11u from both sides.
u\left(u-11\right)=0
Factor out u.
u=0 u=11
To find equation solutions, solve u=0 and u-11=0.
u^{2}-11u=0
Subtract 11u from both sides.
u=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -11 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-11\right)±11}{2}
Take the square root of \left(-11\right)^{2}.
u=\frac{11±11}{2}
The opposite of -11 is 11.
u=\frac{22}{2}
Now solve the equation u=\frac{11±11}{2} when ± is plus. Add 11 to 11.
u=11
Divide 22 by 2.
u=\frac{0}{2}
Now solve the equation u=\frac{11±11}{2} when ± is minus. Subtract 11 from 11.
u=0
Divide 0 by 2.
u=11 u=0
The equation is now solved.
u^{2}-11u=0
Subtract 11u from both sides.
u^{2}-11u+\left(-\frac{11}{2}\right)^{2}=\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}-11u+\frac{121}{4}=\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
\left(u-\frac{11}{2}\right)^{2}=\frac{121}{4}
Factor u^{2}-11u+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-\frac{11}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
u-\frac{11}{2}=\frac{11}{2} u-\frac{11}{2}=-\frac{11}{2}
Simplify.
u=11 u=0
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}