Skip to main content
Solve for u
Tick mark Image

Similar Problems from Web Search

Share

u^{2}+6u+6=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
u=\frac{-6±\sqrt{6^{2}-4\times 1\times 6}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 6 for b, and 6 for c in the quadratic formula.
u=\frac{-6±2\sqrt{3}}{2}
Do the calculations.
u=\sqrt{3}-3 u=-\sqrt{3}-3
Solve the equation u=\frac{-6±2\sqrt{3}}{2} when ± is plus and when ± is minus.
\left(u-\left(\sqrt{3}-3\right)\right)\left(u-\left(-\sqrt{3}-3\right)\right)\leq 0
Rewrite the inequality by using the obtained solutions.
u-\left(\sqrt{3}-3\right)\geq 0 u-\left(-\sqrt{3}-3\right)\leq 0
For the product to be ≤0, one of the values u-\left(\sqrt{3}-3\right) and u-\left(-\sqrt{3}-3\right) has to be ≥0 and the other has to be ≤0. Consider the case when u-\left(\sqrt{3}-3\right)\geq 0 and u-\left(-\sqrt{3}-3\right)\leq 0.
u\in \emptyset
This is false for any u.
u-\left(-\sqrt{3}-3\right)\geq 0 u-\left(\sqrt{3}-3\right)\leq 0
Consider the case when u-\left(\sqrt{3}-3\right)\leq 0 and u-\left(-\sqrt{3}-3\right)\geq 0.
u\in \begin{bmatrix}-\sqrt{3}-3,\sqrt{3}-3\end{bmatrix}
The solution satisfying both inequalities is u\in \left[-\sqrt{3}-3,\sqrt{3}-3\right].
u\in \begin{bmatrix}-\sqrt{3}-3,\sqrt{3}-3\end{bmatrix}
The final solution is the union of the obtained solutions.