Skip to main content
Solve for u
Tick mark Image

Similar Problems from Web Search

Share

u^{2}-4u-140=-104
Combine 10u and -14u to get -4u.
u^{2}-4u-140+104=0
Add 104 to both sides.
u^{2}-4u-36=0
Add -140 and 104 to get -36.
u=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-36\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-4\right)±\sqrt{16-4\left(-36\right)}}{2}
Square -4.
u=\frac{-\left(-4\right)±\sqrt{16+144}}{2}
Multiply -4 times -36.
u=\frac{-\left(-4\right)±\sqrt{160}}{2}
Add 16 to 144.
u=\frac{-\left(-4\right)±4\sqrt{10}}{2}
Take the square root of 160.
u=\frac{4±4\sqrt{10}}{2}
The opposite of -4 is 4.
u=\frac{4\sqrt{10}+4}{2}
Now solve the equation u=\frac{4±4\sqrt{10}}{2} when ± is plus. Add 4 to 4\sqrt{10}.
u=2\sqrt{10}+2
Divide 4+4\sqrt{10} by 2.
u=\frac{4-4\sqrt{10}}{2}
Now solve the equation u=\frac{4±4\sqrt{10}}{2} when ± is minus. Subtract 4\sqrt{10} from 4.
u=2-2\sqrt{10}
Divide 4-4\sqrt{10} by 2.
u=2\sqrt{10}+2 u=2-2\sqrt{10}
The equation is now solved.
u^{2}-4u-140=-104
Combine 10u and -14u to get -4u.
u^{2}-4u=-104+140
Add 140 to both sides.
u^{2}-4u=36
Add -104 and 140 to get 36.
u^{2}-4u+\left(-2\right)^{2}=36+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}-4u+4=36+4
Square -2.
u^{2}-4u+4=40
Add 36 to 4.
\left(u-2\right)^{2}=40
Factor u^{2}-4u+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-2\right)^{2}}=\sqrt{40}
Take the square root of both sides of the equation.
u-2=2\sqrt{10} u-2=-2\sqrt{10}
Simplify.
u=2\sqrt{10}+2 u=2-2\sqrt{10}
Add 2 to both sides of the equation.