Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{2\pi n_{1}i}{\ln(x)}+\log_{x}\left(\frac{u}{\ln(\frac{y}{x})}\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&u\neq 0\text{ and }\ln(\frac{y}{x})\neq 0\text{ and }y\neq 0\text{ and }x\neq 0\text{ and }x\neq 1\text{ and }x\neq y\\n\in \mathrm{C}\text{, }&\left(u=0\text{ and }x=y\text{ and }y\neq 0\right)\text{ or }\left(y=e^{u}\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }u=2\pi n_{2}i\text{ and }x=1\right)\end{matrix}\right.
Solve for u (complex solution)
u=\ln(\frac{y}{x})x^{n}
y\neq 0\text{ and }x\neq 0
Solve for n
\left\{\begin{matrix}n=\log_{x}\left(\frac{u}{\ln(\frac{y}{x})}\right)\text{, }&u\neq 0\text{ and }\left(u>0\text{ or }x>y\right)\text{ and }x>0\text{ and }\left(x<y\text{ or }u<0\right)\text{ and }x\neq y\text{ and }x\neq 1\text{ and }\ln(\frac{y}{x})\neq 0\text{ and }y>0\\n\in \mathrm{R}\text{, }&\left(u=0\text{ and }y=x\text{ and }x>0\right)\text{ or }\left(u\neq 0\text{ and }x=1\text{ and }y=e^{u}\right)\text{ or }\left(u=0\text{ and }y=x\text{ and }x<0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(Denominator(n)\text{bmod}2=1\text{ and }Numerator(n)\text{bmod}2=1\text{ and }u\neq 0\text{ and }x=-1\text{ and }y=-\frac{1}{e^{u}}\right)\end{matrix}\right.
Solve for u
u=\ln(\frac{y}{x})x^{n}
\left(Denominator(n)\text{bmod}2=1\text{ and }y<0\text{ and }x<0\right)\text{ or }\left(y>0\text{ and }x>0\right)
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}