Solve for j
j=\frac{u-12k-10i}{11}
Solve for k
k=\frac{u-11j-10i}{12}
Share
Copied to clipboard
10i+11j+12k=u
Swap sides so that all variable terms are on the left hand side.
11j+12k=u-10i
Subtract 10i from both sides.
11j=u-10i-12k
Subtract 12k from both sides.
11j=u-12k-10i
The equation is in standard form.
\frac{11j}{11}=\frac{u-12k-10i}{11}
Divide both sides by 11.
j=\frac{u-12k-10i}{11}
Dividing by 11 undoes the multiplication by 11.
j=\frac{u}{11}-\frac{12k}{11}-\frac{10}{11}i
Divide u-10i-12k by 11.
10i+11j+12k=u
Swap sides so that all variable terms are on the left hand side.
11j+12k=u-10i
Subtract 10i from both sides.
12k=u-10i-11j
Subtract 11j from both sides.
12k=u-11j-10i
The equation is in standard form.
\frac{12k}{12}=\frac{u-11j-10i}{12}
Divide both sides by 12.
k=\frac{u-11j-10i}{12}
Dividing by 12 undoes the multiplication by 12.
k=\frac{u}{12}-\frac{11j}{12}-\frac{5}{6}i
Divide u-10i-11j by 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}