Solve for x
\left\{\begin{matrix}x=\frac{y\phi }{u-y\psi }\text{, }&\phi \neq 0\text{ and }y\neq 0\text{ and }u\neq y\psi \\x\neq 0\text{, }&\left(u=0\text{ and }y=0\right)\text{ or }\left(\phi =0\text{ and }u=y\psi \right)\end{matrix}\right.
Solve for u
u=\frac{y\left(x\psi +\phi \right)}{x}
x\neq 0
Graph
Share
Copied to clipboard
ux=\phi y+x\psi y
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
ux-x\psi y=\phi y
Subtract x\psi y from both sides.
-xy\psi +ux=y\phi
Reorder the terms.
\left(-y\psi +u\right)x=y\phi
Combine all terms containing x.
\left(u-y\psi \right)x=y\phi
The equation is in standard form.
\frac{\left(u-y\psi \right)x}{u-y\psi }=\frac{y\phi }{u-y\psi }
Divide both sides by -y\psi +u.
x=\frac{y\phi }{u-y\psi }
Dividing by -y\psi +u undoes the multiplication by -y\psi +u.
x=\frac{y\phi }{u-y\psi }\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}