Solve for u
u = \frac{675000000000}{361} = 1869806094\frac{66}{361} \approx 1869806094.182825485
Assign u
u≔\frac{675000000000}{361}
Share
Copied to clipboard
u=4.56\times \frac{1\times 1000\times 1.5\times 15^{4}}{0.57^{3}}
Calculate 10 to the power of 3 and get 1000.
u=4.56\times \frac{1000\times 1.5\times 15^{4}}{0.57^{3}}
Multiply 1 and 1000 to get 1000.
u=4.56\times \frac{1500\times 15^{4}}{0.57^{3}}
Multiply 1000 and 1.5 to get 1500.
u=4.56\times \frac{1500\times 50625}{0.57^{3}}
Calculate 15 to the power of 4 and get 50625.
u=4.56\times \frac{75937500}{0.57^{3}}
Multiply 1500 and 50625 to get 75937500.
u=4.56\times \frac{75937500}{0.185193}
Calculate 0.57 to the power of 3 and get 0.185193.
u=4.56\times \frac{75937500000000}{185193}
Expand \frac{75937500}{0.185193} by multiplying both numerator and the denominator by 1000000.
u=4.56\times \frac{2812500000000}{6859}
Reduce the fraction \frac{75937500000000}{185193} to lowest terms by extracting and canceling out 27.
u=\frac{114}{25}\times \frac{2812500000000}{6859}
Convert decimal number 4.56 to fraction \frac{456}{100}. Reduce the fraction \frac{456}{100} to lowest terms by extracting and canceling out 4.
u=\frac{114\times 2812500000000}{25\times 6859}
Multiply \frac{114}{25} times \frac{2812500000000}{6859} by multiplying numerator times numerator and denominator times denominator.
u=\frac{320625000000000}{171475}
Do the multiplications in the fraction \frac{114\times 2812500000000}{25\times 6859}.
u=\frac{675000000000}{361}
Reduce the fraction \frac{320625000000000}{171475} to lowest terms by extracting and canceling out 475.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}