Solve for f
f=\frac{x-1}{tx}
x\neq 0\text{ and }t\neq 0\text{ and }x\neq 1
Solve for t
t=\frac{x-1}{fx}
x\neq 0\text{ and }f\neq 0\text{ and }x\neq 1
Graph
Share
Copied to clipboard
tfx\left(x-1\right)=x^{2}-2x+1
Multiply both sides of the equation by x-1.
tfx^{2}-tfx=x^{2}-2x+1
Use the distributive property to multiply tfx by x-1.
\left(tx^{2}-tx\right)f=x^{2}-2x+1
Combine all terms containing f.
\frac{\left(tx^{2}-tx\right)f}{tx^{2}-tx}=\frac{\left(x-1\right)^{2}}{tx^{2}-tx}
Divide both sides by tx^{2}-tx.
f=\frac{\left(x-1\right)^{2}}{tx^{2}-tx}
Dividing by tx^{2}-tx undoes the multiplication by tx^{2}-tx.
f=\frac{x-1}{tx}
Divide \left(x-1\right)^{2} by tx^{2}-tx.
tfx\left(x-1\right)=x^{2}-2x+1
Multiply both sides of the equation by x-1.
tfx^{2}-tfx=x^{2}-2x+1
Use the distributive property to multiply tfx by x-1.
\left(fx^{2}-fx\right)t=x^{2}-2x+1
Combine all terms containing t.
\frac{\left(fx^{2}-fx\right)t}{fx^{2}-fx}=\frac{\left(x-1\right)^{2}}{fx^{2}-fx}
Divide both sides by fx^{2}-fx.
t=\frac{\left(x-1\right)^{2}}{fx^{2}-fx}
Dividing by fx^{2}-fx undoes the multiplication by fx^{2}-fx.
t=\frac{x-1}{fx}
Divide \left(x-1\right)^{2} by fx^{2}-fx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}