Solve for a
\left\{\begin{matrix}a=-\frac{bn-t_{n}}{n^{2}}\text{, }&n\neq 0\\a\in \mathrm{R}\text{, }&t_{n}=0\text{ and }n=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-an+\frac{t_{n}}{n}\text{, }&n\neq 0\\b\in \mathrm{R}\text{, }&t_{n}=0\text{ and }n=0\end{matrix}\right.
Share
Copied to clipboard
an^{2}+bn=t_{n}
Swap sides so that all variable terms are on the left hand side.
an^{2}=t_{n}-bn
Subtract bn from both sides.
n^{2}a=t_{n}-bn
The equation is in standard form.
\frac{n^{2}a}{n^{2}}=\frac{t_{n}-bn}{n^{2}}
Divide both sides by n^{2}.
a=\frac{t_{n}-bn}{n^{2}}
Dividing by n^{2} undoes the multiplication by n^{2}.
an^{2}+bn=t_{n}
Swap sides so that all variable terms are on the left hand side.
bn=t_{n}-an^{2}
Subtract an^{2} from both sides.
bn=-an^{2}+t_{n}
Reorder the terms.
nb=t_{n}-an^{2}
The equation is in standard form.
\frac{nb}{n}=\frac{t_{n}-an^{2}}{n}
Divide both sides by n.
b=\frac{t_{n}-an^{2}}{n}
Dividing by n undoes the multiplication by n.
b=-an+\frac{t_{n}}{n}
Divide t_{n}-an^{2} by n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}