Solve for s (complex solution)
\left\{\begin{matrix}s=\frac{t-z^{x+1}}{x^{t}}\text{, }&t=0\text{ or }x\neq 0\\s\in \mathrm{C}\text{, }&t=z\text{ and }z\neq 0\text{ and }x=0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=\frac{t-z^{x+1}}{x^{t}}\text{, }&\left(z<0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<0\text{ and }Denominator(t)\text{bmod}2=1\right)\text{ or }\left(z<0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>0\right)\text{ or }\left(z>0\text{ and }x<0\text{ and }Denominator(t)\text{bmod}2=1\right)\text{ or }\left(x>0\text{ and }z\geq 0\right)\\s\in \mathrm{R}\text{, }&x=0\text{ and }z=t\text{ and }t>0\end{matrix}\right.
Share
Copied to clipboard
x^{t}s=t-z^{x}z
Swap sides so that all variable terms are on the left hand side.
sx^{t}=-zz^{x}+t
Reorder the terms.
x^{t}s=t-z^{x+1}
The equation is in standard form.
\frac{x^{t}s}{x^{t}}=\frac{t-z^{x+1}}{x^{t}}
Divide both sides by x^{t}.
s=\frac{t-z^{x+1}}{x^{t}}
Dividing by x^{t} undoes the multiplication by x^{t}.
x^{t}s=t-z^{x}z
Swap sides so that all variable terms are on the left hand side.
sx^{t}=-zz^{x}+t
Reorder the terms.
x^{t}s=t-z^{x+1}
The equation is in standard form.
\frac{x^{t}s}{x^{t}}=\frac{t-z^{x+1}}{x^{t}}
Divide both sides by x^{t}.
s=\frac{t-z^{x+1}}{x^{t}}
Dividing by x^{t} undoes the multiplication by x^{t}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}