Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

t\times \frac{\left(-2a^{2}b\right)^{-2}}{\left(3c\right)^{-2}}A
To raise \frac{-2a^{2}b}{3c} to a power, raise both numerator and denominator to the power and then divide.
\frac{t\left(-2a^{2}b\right)^{-2}}{\left(3c\right)^{-2}}A
Express t\times \frac{\left(-2a^{2}b\right)^{-2}}{\left(3c\right)^{-2}} as a single fraction.
\frac{t\left(-2a^{2}b\right)^{-2}A}{\left(3c\right)^{-2}}
Express \frac{t\left(-2a^{2}b\right)^{-2}}{\left(3c\right)^{-2}}A as a single fraction.
\frac{t\left(-2\right)^{-2}\left(a^{2}\right)^{-2}b^{-2}A}{\left(3c\right)^{-2}}
Expand \left(-2a^{2}b\right)^{-2}.
\frac{t\left(-2\right)^{-2}a^{-4}b^{-2}A}{\left(3c\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{t\times \frac{1}{4}a^{-4}b^{-2}A}{\left(3c\right)^{-2}}
Calculate -2 to the power of -2 and get \frac{1}{4}.
\frac{t\times \frac{1}{4}a^{-4}b^{-2}A}{3^{-2}c^{-2}}
Expand \left(3c\right)^{-2}.
\frac{t\times \frac{1}{4}a^{-4}b^{-2}A}{\frac{1}{9}c^{-2}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
t\times \frac{\left(-2a^{2}b\right)^{-2}}{\left(3c\right)^{-2}}A
To raise \frac{-2a^{2}b}{3c} to a power, raise both numerator and denominator to the power and then divide.
\frac{t\left(-2a^{2}b\right)^{-2}}{\left(3c\right)^{-2}}A
Express t\times \frac{\left(-2a^{2}b\right)^{-2}}{\left(3c\right)^{-2}} as a single fraction.
\frac{t\left(-2a^{2}b\right)^{-2}A}{\left(3c\right)^{-2}}
Express \frac{t\left(-2a^{2}b\right)^{-2}}{\left(3c\right)^{-2}}A as a single fraction.
\frac{t\left(-2\right)^{-2}\left(a^{2}\right)^{-2}b^{-2}A}{\left(3c\right)^{-2}}
Expand \left(-2a^{2}b\right)^{-2}.
\frac{t\left(-2\right)^{-2}a^{-4}b^{-2}A}{\left(3c\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{t\times \frac{1}{4}a^{-4}b^{-2}A}{\left(3c\right)^{-2}}
Calculate -2 to the power of -2 and get \frac{1}{4}.
\frac{t\times \frac{1}{4}a^{-4}b^{-2}A}{3^{-2}c^{-2}}
Expand \left(3c\right)^{-2}.
\frac{t\times \frac{1}{4}a^{-4}b^{-2}A}{\frac{1}{9}c^{-2}}
Calculate 3 to the power of -2 and get \frac{1}{9}.