Solve for s
s=\frac{23t}{t+17}
t\neq -17
Solve for t
t=\frac{17s}{23-s}
s\neq 23
Share
Copied to clipboard
t\times 1s+17s=t\times 23
Swap sides so that all variable terms are on the left hand side.
st+17s=23t
Reorder the terms.
\left(t+17\right)s=23t
Combine all terms containing s.
\frac{\left(t+17\right)s}{t+17}=\frac{23t}{t+17}
Divide both sides by 17+t.
s=\frac{23t}{t+17}
Dividing by 17+t undoes the multiplication by 17+t.
t\times 23-t\times 1s=17s
Subtract t\times 1s from both sides.
23t-st=17s
Reorder the terms.
-st+23t=17s
Reorder the terms.
\left(-s+23\right)t=17s
Combine all terms containing t.
\left(23-s\right)t=17s
The equation is in standard form.
\frac{\left(23-s\right)t}{23-s}=\frac{17s}{23-s}
Divide both sides by 23-s.
t=\frac{17s}{23-s}
Dividing by 23-s undoes the multiplication by 23-s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}