Factor
\left(t-1\right)\left(t+1\right)^{2}\left(t^{2}-t+1\right)
Evaluate
\left(t-1\right)\left(t+1\right)^{2}\left(t^{2}-t+1\right)
Share
Copied to clipboard
t^{3}\left(t^{2}-1\right)+t^{2}-1
Do the grouping t^{5}-t^{3}+t^{2}-1=\left(t^{5}-t^{3}\right)+\left(t^{2}-1\right), and factor out t^{3} in t^{5}-t^{3}.
\left(t^{2}-1\right)\left(t^{3}+1\right)
Factor out common term t^{2}-1 by using distributive property.
\left(t-1\right)\left(t+1\right)
Consider t^{2}-1. Rewrite t^{2}-1 as t^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(t+1\right)\left(t^{2}-t+1\right)
Consider t^{3}+1. Rewrite t^{3}+1 as t^{3}+1^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(t-1\right)\left(t^{2}-t+1\right)\left(t+1\right)^{2}
Rewrite the complete factored expression. Polynomial t^{2}-t+1 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}