Solve for c (complex solution)
\left\{\begin{matrix}c=\frac{x+yt^{2}}{2t}\text{, }&t\neq 0\\c\in \mathrm{C}\text{, }&x=0\text{ and }t=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=\frac{x+yt^{2}}{2t}\text{, }&t\neq 0\\c\in \mathrm{R}\text{, }&x=0\text{ and }t=0\end{matrix}\right.
Solve for t (complex solution)
\left\{\begin{matrix}t=\frac{\sqrt{c^{2}-xy}+c}{y}\text{; }t=\frac{-\sqrt{c^{2}-xy}+c}{y}\text{, }&y\neq 0\\t=\frac{x}{2c}\text{, }&y=0\text{ and }c\neq 0\\t\in \mathrm{C}\text{, }&y=0\text{ and }c=0\text{ and }x=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=\frac{\sqrt{c^{2}-xy}+c}{y}\text{; }t=\frac{-\sqrt{c^{2}-xy}+c}{y}\text{, }&\left(c\neq 0\text{ and }y=\frac{c^{2}}{x}\text{ and }x\neq 0\right)\text{ or }\left(y\neq 0\text{ and }y\geq \frac{c^{2}}{x}\text{ and }x\leq 0\right)\text{ or }\left(x=0\text{ and }y\neq 0\right)\text{ or }\left(y\neq 0\text{ and }x\geq 0\text{ and }y\leq \frac{c^{2}}{x}\right)\\t=\frac{x}{2c}\text{, }&y=0\text{ and }c\neq 0\\t\in \mathrm{R}\text{, }&y=0\text{ and }c=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
t^{2}y-ct=-x+ct
To find the opposite of x-ct, find the opposite of each term.
t^{2}y-ct-ct=-x
Subtract ct from both sides.
t^{2}y-2ct=-x
Combine -ct and -ct to get -2ct.
-2ct=-x-t^{2}y
Subtract t^{2}y from both sides.
-2ct=-x-yt^{2}
Reorder the terms.
\left(-2t\right)c=-x-yt^{2}
The equation is in standard form.
\frac{\left(-2t\right)c}{-2t}=\frac{-x-yt^{2}}{-2t}
Divide both sides by -2t.
c=\frac{-x-yt^{2}}{-2t}
Dividing by -2t undoes the multiplication by -2t.
c=\frac{ty}{2}+\frac{x}{2t}
Divide -x-yt^{2} by -2t.
t^{2}y-ct=-x+ct
To find the opposite of x-ct, find the opposite of each term.
t^{2}y-ct-ct=-x
Subtract ct from both sides.
t^{2}y-2ct=-x
Combine -ct and -ct to get -2ct.
-2ct=-x-t^{2}y
Subtract t^{2}y from both sides.
-2ct=-x-yt^{2}
Reorder the terms.
\left(-2t\right)c=-x-yt^{2}
The equation is in standard form.
\frac{\left(-2t\right)c}{-2t}=\frac{-x-yt^{2}}{-2t}
Divide both sides by -2t.
c=\frac{-x-yt^{2}}{-2t}
Dividing by -2t undoes the multiplication by -2t.
c=\frac{ty}{2}+\frac{x}{2t}
Divide -x-yt^{2} by -2t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}