Solve for t
t\in (-\infty,3-2\sqrt{2}]\cup [2\sqrt{2}+3,\infty)
Share
Copied to clipboard
t^{2}-6t+1=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -6 for b, and 1 for c in the quadratic formula.
t=\frac{6±4\sqrt{2}}{2}
Do the calculations.
t=2\sqrt{2}+3 t=3-2\sqrt{2}
Solve the equation t=\frac{6±4\sqrt{2}}{2} when ± is plus and when ± is minus.
\left(t-\left(2\sqrt{2}+3\right)\right)\left(t-\left(3-2\sqrt{2}\right)\right)\geq 0
Rewrite the inequality by using the obtained solutions.
t-\left(2\sqrt{2}+3\right)\leq 0 t-\left(3-2\sqrt{2}\right)\leq 0
For the product to be ≥0, t-\left(2\sqrt{2}+3\right) and t-\left(3-2\sqrt{2}\right) have to be both ≤0 or both ≥0. Consider the case when t-\left(2\sqrt{2}+3\right) and t-\left(3-2\sqrt{2}\right) are both ≤0.
t\leq 3-2\sqrt{2}
The solution satisfying both inequalities is t\leq 3-2\sqrt{2}.
t-\left(3-2\sqrt{2}\right)\geq 0 t-\left(2\sqrt{2}+3\right)\geq 0
Consider the case when t-\left(2\sqrt{2}+3\right) and t-\left(3-2\sqrt{2}\right) are both ≥0.
t\geq 2\sqrt{2}+3
The solution satisfying both inequalities is t\geq 2\sqrt{2}+3.
t\leq 3-2\sqrt{2}\text{; }t\geq 2\sqrt{2}+3
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}