Solve for t
t=\sqrt{301}+7\approx 24.349351573
t=7-\sqrt{301}\approx -10.349351573
Share
Copied to clipboard
t^{2}-14t=252
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t^{2}-14t-252=252-252
Subtract 252 from both sides of the equation.
t^{2}-14t-252=0
Subtracting 252 from itself leaves 0.
t=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-252\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and -252 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-14\right)±\sqrt{196-4\left(-252\right)}}{2}
Square -14.
t=\frac{-\left(-14\right)±\sqrt{196+1008}}{2}
Multiply -4 times -252.
t=\frac{-\left(-14\right)±\sqrt{1204}}{2}
Add 196 to 1008.
t=\frac{-\left(-14\right)±2\sqrt{301}}{2}
Take the square root of 1204.
t=\frac{14±2\sqrt{301}}{2}
The opposite of -14 is 14.
t=\frac{2\sqrt{301}+14}{2}
Now solve the equation t=\frac{14±2\sqrt{301}}{2} when ± is plus. Add 14 to 2\sqrt{301}.
t=\sqrt{301}+7
Divide 14+2\sqrt{301} by 2.
t=\frac{14-2\sqrt{301}}{2}
Now solve the equation t=\frac{14±2\sqrt{301}}{2} when ± is minus. Subtract 2\sqrt{301} from 14.
t=7-\sqrt{301}
Divide 14-2\sqrt{301} by 2.
t=\sqrt{301}+7 t=7-\sqrt{301}
The equation is now solved.
t^{2}-14t=252
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
t^{2}-14t+\left(-7\right)^{2}=252+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-14t+49=252+49
Square -7.
t^{2}-14t+49=301
Add 252 to 49.
\left(t-7\right)^{2}=301
Factor t^{2}-14t+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-7\right)^{2}}=\sqrt{301}
Take the square root of both sides of the equation.
t-7=\sqrt{301} t-7=-\sqrt{301}
Simplify.
t=\sqrt{301}+7 t=7-\sqrt{301}
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}