Solve for t
t = -\frac{3}{2} = -1\frac{1}{2} = -1.5
t=2
Share
Copied to clipboard
t^{2}-\frac{1}{2}t-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{1}{2} for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\left(-3\right)}}{2}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+12}}{2}
Multiply -4 times -3.
t=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{49}{4}}}{2}
Add \frac{1}{4} to 12.
t=\frac{-\left(-\frac{1}{2}\right)±\frac{7}{2}}{2}
Take the square root of \frac{49}{4}.
t=\frac{\frac{1}{2}±\frac{7}{2}}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
t=\frac{4}{2}
Now solve the equation t=\frac{\frac{1}{2}±\frac{7}{2}}{2} when ± is plus. Add \frac{1}{2} to \frac{7}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=2
Divide 4 by 2.
t=-\frac{3}{2}
Now solve the equation t=\frac{\frac{1}{2}±\frac{7}{2}}{2} when ± is minus. Subtract \frac{7}{2} from \frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
t=2 t=-\frac{3}{2}
The equation is now solved.
t^{2}-\frac{1}{2}t-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
t^{2}-\frac{1}{2}t-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
t^{2}-\frac{1}{2}t=-\left(-3\right)
Subtracting -3 from itself leaves 0.
t^{2}-\frac{1}{2}t=3
Subtract -3 from 0.
t^{2}-\frac{1}{2}t+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{1}{2}t+\frac{1}{16}=3+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{1}{2}t+\frac{1}{16}=\frac{49}{16}
Add 3 to \frac{1}{16}.
\left(t-\frac{1}{4}\right)^{2}=\frac{49}{16}
Factor t^{2}-\frac{1}{2}t+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
t-\frac{1}{4}=\frac{7}{4} t-\frac{1}{4}=-\frac{7}{4}
Simplify.
t=2 t=-\frac{3}{2}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}