Solve for t
t=\frac{9}{10}=0.9
t=-\frac{9}{10}=-0.9
Share
Copied to clipboard
900t^{2}=9^{3}
Multiply both sides of the equation by 900.
900t^{2}=729
Calculate 9 to the power of 3 and get 729.
900t^{2}-729=0
Subtract 729 from both sides.
100t^{2}-81=0
Divide both sides by 9.
\left(10t-9\right)\left(10t+9\right)=0
Consider 100t^{2}-81. Rewrite 100t^{2}-81 as \left(10t\right)^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=\frac{9}{10} t=-\frac{9}{10}
To find equation solutions, solve 10t-9=0 and 10t+9=0.
900t^{2}=9^{3}
Multiply both sides of the equation by 900.
900t^{2}=729
Calculate 9 to the power of 3 and get 729.
t^{2}=\frac{729}{900}
Divide both sides by 900.
t^{2}=\frac{81}{100}
Reduce the fraction \frac{729}{900} to lowest terms by extracting and canceling out 9.
t=\frac{9}{10} t=-\frac{9}{10}
Take the square root of both sides of the equation.
900t^{2}=9^{3}
Multiply both sides of the equation by 900.
900t^{2}=729
Calculate 9 to the power of 3 and get 729.
900t^{2}-729=0
Subtract 729 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times 900\left(-729\right)}}{2\times 900}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 900 for a, 0 for b, and -729 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 900\left(-729\right)}}{2\times 900}
Square 0.
t=\frac{0±\sqrt{-3600\left(-729\right)}}{2\times 900}
Multiply -4 times 900.
t=\frac{0±\sqrt{2624400}}{2\times 900}
Multiply -3600 times -729.
t=\frac{0±1620}{2\times 900}
Take the square root of 2624400.
t=\frac{0±1620}{1800}
Multiply 2 times 900.
t=\frac{9}{10}
Now solve the equation t=\frac{0±1620}{1800} when ± is plus. Reduce the fraction \frac{1620}{1800} to lowest terms by extracting and canceling out 180.
t=-\frac{9}{10}
Now solve the equation t=\frac{0±1620}{1800} when ± is minus. Reduce the fraction \frac{-1620}{1800} to lowest terms by extracting and canceling out 180.
t=\frac{9}{10} t=-\frac{9}{10}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}