Solve for t
t=3\sqrt{5}-4\approx 2.708203932
t=-3\sqrt{5}-4\approx -10.708203932
Share
Copied to clipboard
t^{2}+8t+16=45
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t^{2}+8t+16-45=45-45
Subtract 45 from both sides of the equation.
t^{2}+8t+16-45=0
Subtracting 45 from itself leaves 0.
t^{2}+8t-29=0
Subtract 45 from 16.
t=\frac{-8±\sqrt{8^{2}-4\left(-29\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-8±\sqrt{64-4\left(-29\right)}}{2}
Square 8.
t=\frac{-8±\sqrt{64+116}}{2}
Multiply -4 times -29.
t=\frac{-8±\sqrt{180}}{2}
Add 64 to 116.
t=\frac{-8±6\sqrt{5}}{2}
Take the square root of 180.
t=\frac{6\sqrt{5}-8}{2}
Now solve the equation t=\frac{-8±6\sqrt{5}}{2} when ± is plus. Add -8 to 6\sqrt{5}.
t=3\sqrt{5}-4
Divide -8+6\sqrt{5} by 2.
t=\frac{-6\sqrt{5}-8}{2}
Now solve the equation t=\frac{-8±6\sqrt{5}}{2} when ± is minus. Subtract 6\sqrt{5} from -8.
t=-3\sqrt{5}-4
Divide -8-6\sqrt{5} by 2.
t=3\sqrt{5}-4 t=-3\sqrt{5}-4
The equation is now solved.
\left(t+4\right)^{2}=45
Factor t^{2}+8t+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+4\right)^{2}}=\sqrt{45}
Take the square root of both sides of the equation.
t+4=3\sqrt{5} t+4=-3\sqrt{5}
Simplify.
t=3\sqrt{5}-4 t=-3\sqrt{5}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}