Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t^{2}+8t+16=45
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t^{2}+8t+16-45=45-45
Subtract 45 from both sides of the equation.
t^{2}+8t+16-45=0
Subtracting 45 from itself leaves 0.
t^{2}+8t-29=0
Subtract 45 from 16.
t=\frac{-8±\sqrt{8^{2}-4\left(-29\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-8±\sqrt{64-4\left(-29\right)}}{2}
Square 8.
t=\frac{-8±\sqrt{64+116}}{2}
Multiply -4 times -29.
t=\frac{-8±\sqrt{180}}{2}
Add 64 to 116.
t=\frac{-8±6\sqrt{5}}{2}
Take the square root of 180.
t=\frac{6\sqrt{5}-8}{2}
Now solve the equation t=\frac{-8±6\sqrt{5}}{2} when ± is plus. Add -8 to 6\sqrt{5}.
t=3\sqrt{5}-4
Divide -8+6\sqrt{5} by 2.
t=\frac{-6\sqrt{5}-8}{2}
Now solve the equation t=\frac{-8±6\sqrt{5}}{2} when ± is minus. Subtract 6\sqrt{5} from -8.
t=-3\sqrt{5}-4
Divide -8-6\sqrt{5} by 2.
t=3\sqrt{5}-4 t=-3\sqrt{5}-4
The equation is now solved.
\left(t+4\right)^{2}=45
Factor t^{2}+8t+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+4\right)^{2}}=\sqrt{45}
Take the square root of both sides of the equation.
t+4=3\sqrt{5} t+4=-3\sqrt{5}
Simplify.
t=3\sqrt{5}-4 t=-3\sqrt{5}-4
Subtract 4 from both sides of the equation.