Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t^{2}+6t-7.2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-6±\sqrt{6^{2}-4\left(-7.2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -7.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-6±\sqrt{36-4\left(-7.2\right)}}{2}
Square 6.
t=\frac{-6±\sqrt{36+28.8}}{2}
Multiply -4 times -7.2.
t=\frac{-6±\sqrt{64.8}}{2}
Add 36 to 28.8.
t=\frac{-6±\frac{18\sqrt{5}}{5}}{2}
Take the square root of 64.8.
t=\frac{\frac{18\sqrt{5}}{5}-6}{2}
Now solve the equation t=\frac{-6±\frac{18\sqrt{5}}{5}}{2} when ± is plus. Add -6 to \frac{18\sqrt{5}}{5}.
t=\frac{9\sqrt{5}}{5}-3
Divide -6+\frac{18\sqrt{5}}{5} by 2.
t=\frac{-\frac{18\sqrt{5}}{5}-6}{2}
Now solve the equation t=\frac{-6±\frac{18\sqrt{5}}{5}}{2} when ± is minus. Subtract \frac{18\sqrt{5}}{5} from -6.
t=-\frac{9\sqrt{5}}{5}-3
Divide -6-\frac{18\sqrt{5}}{5} by 2.
t=\frac{9\sqrt{5}}{5}-3 t=-\frac{9\sqrt{5}}{5}-3
The equation is now solved.
t^{2}+6t-7.2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
t^{2}+6t-7.2-\left(-7.2\right)=-\left(-7.2\right)
Add 7.2 to both sides of the equation.
t^{2}+6t=-\left(-7.2\right)
Subtracting -7.2 from itself leaves 0.
t^{2}+6t=7.2
Subtract -7.2 from 0.
t^{2}+6t+3^{2}=7.2+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+6t+9=7.2+9
Square 3.
t^{2}+6t+9=16.2
Add 7.2 to 9.
\left(t+3\right)^{2}=16.2
Factor t^{2}+6t+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+3\right)^{2}}=\sqrt{16.2}
Take the square root of both sides of the equation.
t+3=\frac{9\sqrt{5}}{5} t+3=-\frac{9\sqrt{5}}{5}
Simplify.
t=\frac{9\sqrt{5}}{5}-3 t=-\frac{9\sqrt{5}}{5}-3
Subtract 3 from both sides of the equation.