Solve for t
t = -\frac{3}{2} = -1\frac{1}{2} = -1.5
t=\frac{1}{2}=0.5
Share
Copied to clipboard
t^{2}+t^{2}+2t+1=\frac{5}{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+1\right)^{2}.
2t^{2}+2t+1=\frac{5}{2}
Combine t^{2} and t^{2} to get 2t^{2}.
2t^{2}+2t+1-\frac{5}{2}=0
Subtract \frac{5}{2} from both sides.
2t^{2}+2t-\frac{3}{2}=0
Subtract \frac{5}{2} from 1 to get -\frac{3}{2}.
t=\frac{-2±\sqrt{2^{2}-4\times 2\left(-\frac{3}{2}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -\frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2±\sqrt{4-4\times 2\left(-\frac{3}{2}\right)}}{2\times 2}
Square 2.
t=\frac{-2±\sqrt{4-8\left(-\frac{3}{2}\right)}}{2\times 2}
Multiply -4 times 2.
t=\frac{-2±\sqrt{4+12}}{2\times 2}
Multiply -8 times -\frac{3}{2}.
t=\frac{-2±\sqrt{16}}{2\times 2}
Add 4 to 12.
t=\frac{-2±4}{2\times 2}
Take the square root of 16.
t=\frac{-2±4}{4}
Multiply 2 times 2.
t=\frac{2}{4}
Now solve the equation t=\frac{-2±4}{4} when ± is plus. Add -2 to 4.
t=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
t=-\frac{6}{4}
Now solve the equation t=\frac{-2±4}{4} when ± is minus. Subtract 4 from -2.
t=-\frac{3}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
t=\frac{1}{2} t=-\frac{3}{2}
The equation is now solved.
t^{2}+t^{2}+2t+1=\frac{5}{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+1\right)^{2}.
2t^{2}+2t+1=\frac{5}{2}
Combine t^{2} and t^{2} to get 2t^{2}.
2t^{2}+2t=\frac{5}{2}-1
Subtract 1 from both sides.
2t^{2}+2t=\frac{3}{2}
Subtract 1 from \frac{5}{2} to get \frac{3}{2}.
\frac{2t^{2}+2t}{2}=\frac{\frac{3}{2}}{2}
Divide both sides by 2.
t^{2}+\frac{2}{2}t=\frac{\frac{3}{2}}{2}
Dividing by 2 undoes the multiplication by 2.
t^{2}+t=\frac{\frac{3}{2}}{2}
Divide 2 by 2.
t^{2}+t=\frac{3}{4}
Divide \frac{3}{2} by 2.
t^{2}+t+\left(\frac{1}{2}\right)^{2}=\frac{3}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+t+\frac{1}{4}=\frac{3+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}+t+\frac{1}{4}=1
Add \frac{3}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{1}{2}\right)^{2}=1
Factor t^{2}+t+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{2}\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
t+\frac{1}{2}=1 t+\frac{1}{2}=-1
Simplify.
t=\frac{1}{2} t=-\frac{3}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}