t = k \sqrt { ( } x + 5 )
Solve for k (complex solution)
\left\{\begin{matrix}k=\left(x+5\right)^{-\frac{1}{2}}t\text{, }&x\neq -5\\k\in \mathrm{C}\text{, }&t=0\text{ and }x=-5\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{t}{\sqrt{x+5}}\text{, }&x>-5\\k\in \mathrm{R}\text{, }&x=-5\text{ and }t=0\end{matrix}\right.
Solve for t (complex solution)
t=\sqrt{x+5}k
Solve for t
t=\sqrt{x+5}k
x\geq -5
Graph
Share
Copied to clipboard
k\sqrt{x+5}=t
Swap sides so that all variable terms are on the left hand side.
\sqrt{x+5}k=t
The equation is in standard form.
\frac{\sqrt{x+5}k}{\sqrt{x+5}}=\frac{t}{\sqrt{x+5}}
Divide both sides by \sqrt{x+5}.
k=\frac{t}{\sqrt{x+5}}
Dividing by \sqrt{x+5} undoes the multiplication by \sqrt{x+5}.
k=\left(x+5\right)^{-\frac{1}{2}}t
Divide t by \sqrt{x+5}.
k\sqrt{x+5}=t
Swap sides so that all variable terms are on the left hand side.
\sqrt{x+5}k=t
The equation is in standard form.
\frac{\sqrt{x+5}k}{\sqrt{x+5}}=\frac{t}{\sqrt{x+5}}
Divide both sides by \sqrt{x+5}.
k=\frac{t}{\sqrt{x+5}}
Dividing by \sqrt{x+5} undoes the multiplication by \sqrt{x+5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}