Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t-16t^{2}=48t+20
Subtract 16t^{2} from both sides.
t-16t^{2}-48t=20
Subtract 48t from both sides.
-47t-16t^{2}=20
Combine t and -48t to get -47t.
-47t-16t^{2}-20=0
Subtract 20 from both sides.
-16t^{2}-47t-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-47\right)±\sqrt{\left(-47\right)^{2}-4\left(-16\right)\left(-20\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, -47 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-47\right)±\sqrt{2209-4\left(-16\right)\left(-20\right)}}{2\left(-16\right)}
Square -47.
t=\frac{-\left(-47\right)±\sqrt{2209+64\left(-20\right)}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-\left(-47\right)±\sqrt{2209-1280}}{2\left(-16\right)}
Multiply 64 times -20.
t=\frac{-\left(-47\right)±\sqrt{929}}{2\left(-16\right)}
Add 2209 to -1280.
t=\frac{47±\sqrt{929}}{2\left(-16\right)}
The opposite of -47 is 47.
t=\frac{47±\sqrt{929}}{-32}
Multiply 2 times -16.
t=\frac{\sqrt{929}+47}{-32}
Now solve the equation t=\frac{47±\sqrt{929}}{-32} when ± is plus. Add 47 to \sqrt{929}.
t=\frac{-\sqrt{929}-47}{32}
Divide 47+\sqrt{929} by -32.
t=\frac{47-\sqrt{929}}{-32}
Now solve the equation t=\frac{47±\sqrt{929}}{-32} when ± is minus. Subtract \sqrt{929} from 47.
t=\frac{\sqrt{929}-47}{32}
Divide 47-\sqrt{929} by -32.
t=\frac{-\sqrt{929}-47}{32} t=\frac{\sqrt{929}-47}{32}
The equation is now solved.
t-16t^{2}=48t+20
Subtract 16t^{2} from both sides.
t-16t^{2}-48t=20
Subtract 48t from both sides.
-47t-16t^{2}=20
Combine t and -48t to get -47t.
-16t^{2}-47t=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16t^{2}-47t}{-16}=\frac{20}{-16}
Divide both sides by -16.
t^{2}+\left(-\frac{47}{-16}\right)t=\frac{20}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}+\frac{47}{16}t=\frac{20}{-16}
Divide -47 by -16.
t^{2}+\frac{47}{16}t=-\frac{5}{4}
Reduce the fraction \frac{20}{-16} to lowest terms by extracting and canceling out 4.
t^{2}+\frac{47}{16}t+\left(\frac{47}{32}\right)^{2}=-\frac{5}{4}+\left(\frac{47}{32}\right)^{2}
Divide \frac{47}{16}, the coefficient of the x term, by 2 to get \frac{47}{32}. Then add the square of \frac{47}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{47}{16}t+\frac{2209}{1024}=-\frac{5}{4}+\frac{2209}{1024}
Square \frac{47}{32} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{47}{16}t+\frac{2209}{1024}=\frac{929}{1024}
Add -\frac{5}{4} to \frac{2209}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{47}{32}\right)^{2}=\frac{929}{1024}
Factor t^{2}+\frac{47}{16}t+\frac{2209}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{47}{32}\right)^{2}}=\sqrt{\frac{929}{1024}}
Take the square root of both sides of the equation.
t+\frac{47}{32}=\frac{\sqrt{929}}{32} t+\frac{47}{32}=-\frac{\sqrt{929}}{32}
Simplify.
t=\frac{\sqrt{929}-47}{32} t=\frac{-\sqrt{929}-47}{32}
Subtract \frac{47}{32} from both sides of the equation.