Solve for r (complex solution)
\left\{\begin{matrix}r=-\frac{t}{s}\text{, }&s\neq 0\\r\in \mathrm{C}\text{, }&t=0\text{ and }s=0\end{matrix}\right.
Solve for s (complex solution)
\left\{\begin{matrix}s=-\frac{t}{r}\text{, }&r\neq 0\\s\in \mathrm{C}\text{, }&t=0\text{ and }r=0\end{matrix}\right.
Solve for r
\left\{\begin{matrix}r=-\frac{t}{s}\text{, }&s\neq 0\\r\in \mathrm{R}\text{, }&t=0\text{ and }s=0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=-\frac{t}{r}\text{, }&r\neq 0\\s\in \mathrm{R}\text{, }&t=0\text{ and }r=0\end{matrix}\right.
Share
Copied to clipboard
\left(-r\right)s=t
Swap sides so that all variable terms are on the left hand side.
-rs=t
Reorder the terms.
\left(-s\right)r=t
The equation is in standard form.
\frac{\left(-s\right)r}{-s}=\frac{t}{-s}
Divide both sides by -s.
r=\frac{t}{-s}
Dividing by -s undoes the multiplication by -s.
r=-\frac{t}{s}
Divide t by -s.
\left(-r\right)s=t
Swap sides so that all variable terms are on the left hand side.
\frac{\left(-r\right)s}{-r}=\frac{t}{-r}
Divide both sides by -r.
s=\frac{t}{-r}
Dividing by -r undoes the multiplication by -r.
s=-\frac{t}{r}
Divide t by -r.
\left(-r\right)s=t
Swap sides so that all variable terms are on the left hand side.
-rs=t
Reorder the terms.
\left(-s\right)r=t
The equation is in standard form.
\frac{\left(-s\right)r}{-s}=\frac{t}{-s}
Divide both sides by -s.
r=\frac{t}{-s}
Dividing by -s undoes the multiplication by -s.
r=-\frac{t}{s}
Divide t by -s.
\left(-r\right)s=t
Swap sides so that all variable terms are on the left hand side.
\frac{\left(-r\right)s}{-r}=\frac{t}{-r}
Divide both sides by -r.
s=\frac{t}{-r}
Dividing by -r undoes the multiplication by -r.
s=-\frac{t}{r}
Divide t by -r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}