Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t+16t^{2}=40t+96
Add 16t^{2} to both sides.
t+16t^{2}-40t=96
Subtract 40t from both sides.
-39t+16t^{2}=96
Combine t and -40t to get -39t.
-39t+16t^{2}-96=0
Subtract 96 from both sides.
16t^{2}-39t-96=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\times 16\left(-96\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -39 for b, and -96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-39\right)±\sqrt{1521-4\times 16\left(-96\right)}}{2\times 16}
Square -39.
t=\frac{-\left(-39\right)±\sqrt{1521-64\left(-96\right)}}{2\times 16}
Multiply -4 times 16.
t=\frac{-\left(-39\right)±\sqrt{1521+6144}}{2\times 16}
Multiply -64 times -96.
t=\frac{-\left(-39\right)±\sqrt{7665}}{2\times 16}
Add 1521 to 6144.
t=\frac{39±\sqrt{7665}}{2\times 16}
The opposite of -39 is 39.
t=\frac{39±\sqrt{7665}}{32}
Multiply 2 times 16.
t=\frac{\sqrt{7665}+39}{32}
Now solve the equation t=\frac{39±\sqrt{7665}}{32} when ± is plus. Add 39 to \sqrt{7665}.
t=\frac{39-\sqrt{7665}}{32}
Now solve the equation t=\frac{39±\sqrt{7665}}{32} when ± is minus. Subtract \sqrt{7665} from 39.
t=\frac{\sqrt{7665}+39}{32} t=\frac{39-\sqrt{7665}}{32}
The equation is now solved.
t+16t^{2}=40t+96
Add 16t^{2} to both sides.
t+16t^{2}-40t=96
Subtract 40t from both sides.
-39t+16t^{2}=96
Combine t and -40t to get -39t.
16t^{2}-39t=96
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16t^{2}-39t}{16}=\frac{96}{16}
Divide both sides by 16.
t^{2}-\frac{39}{16}t=\frac{96}{16}
Dividing by 16 undoes the multiplication by 16.
t^{2}-\frac{39}{16}t=6
Divide 96 by 16.
t^{2}-\frac{39}{16}t+\left(-\frac{39}{32}\right)^{2}=6+\left(-\frac{39}{32}\right)^{2}
Divide -\frac{39}{16}, the coefficient of the x term, by 2 to get -\frac{39}{32}. Then add the square of -\frac{39}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{39}{16}t+\frac{1521}{1024}=6+\frac{1521}{1024}
Square -\frac{39}{32} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{39}{16}t+\frac{1521}{1024}=\frac{7665}{1024}
Add 6 to \frac{1521}{1024}.
\left(t-\frac{39}{32}\right)^{2}=\frac{7665}{1024}
Factor t^{2}-\frac{39}{16}t+\frac{1521}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{39}{32}\right)^{2}}=\sqrt{\frac{7665}{1024}}
Take the square root of both sides of the equation.
t-\frac{39}{32}=\frac{\sqrt{7665}}{32} t-\frac{39}{32}=-\frac{\sqrt{7665}}{32}
Simplify.
t=\frac{\sqrt{7665}+39}{32} t=\frac{39-\sqrt{7665}}{32}
Add \frac{39}{32} to both sides of the equation.