Solve for t
t=47
Share
Copied to clipboard
t-40=\sqrt{t+2}
Subtract 40 from both sides of the equation.
\left(t-40\right)^{2}=\left(\sqrt{t+2}\right)^{2}
Square both sides of the equation.
t^{2}-80t+1600=\left(\sqrt{t+2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-40\right)^{2}.
t^{2}-80t+1600=t+2
Calculate \sqrt{t+2} to the power of 2 and get t+2.
t^{2}-80t+1600-t=2
Subtract t from both sides.
t^{2}-81t+1600=2
Combine -80t and -t to get -81t.
t^{2}-81t+1600-2=0
Subtract 2 from both sides.
t^{2}-81t+1598=0
Subtract 2 from 1600 to get 1598.
t=\frac{-\left(-81\right)±\sqrt{\left(-81\right)^{2}-4\times 1598}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -81 for b, and 1598 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-81\right)±\sqrt{6561-4\times 1598}}{2}
Square -81.
t=\frac{-\left(-81\right)±\sqrt{6561-6392}}{2}
Multiply -4 times 1598.
t=\frac{-\left(-81\right)±\sqrt{169}}{2}
Add 6561 to -6392.
t=\frac{-\left(-81\right)±13}{2}
Take the square root of 169.
t=\frac{81±13}{2}
The opposite of -81 is 81.
t=\frac{94}{2}
Now solve the equation t=\frac{81±13}{2} when ± is plus. Add 81 to 13.
t=47
Divide 94 by 2.
t=\frac{68}{2}
Now solve the equation t=\frac{81±13}{2} when ± is minus. Subtract 13 from 81.
t=34
Divide 68 by 2.
t=47 t=34
The equation is now solved.
47=\sqrt{47+2}+40
Substitute 47 for t in the equation t=\sqrt{t+2}+40.
47=47
Simplify. The value t=47 satisfies the equation.
34=\sqrt{34+2}+40
Substitute 34 for t in the equation t=\sqrt{t+2}+40.
34=46
Simplify. The value t=34 does not satisfy the equation.
t=47
Equation t-40=\sqrt{t+2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}