Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t-40=\sqrt{t+2}
Subtract 40 from both sides of the equation.
\left(t-40\right)^{2}=\left(\sqrt{t+2}\right)^{2}
Square both sides of the equation.
t^{2}-80t+1600=\left(\sqrt{t+2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-40\right)^{2}.
t^{2}-80t+1600=t+2
Calculate \sqrt{t+2} to the power of 2 and get t+2.
t^{2}-80t+1600-t=2
Subtract t from both sides.
t^{2}-81t+1600=2
Combine -80t and -t to get -81t.
t^{2}-81t+1600-2=0
Subtract 2 from both sides.
t^{2}-81t+1598=0
Subtract 2 from 1600 to get 1598.
t=\frac{-\left(-81\right)±\sqrt{\left(-81\right)^{2}-4\times 1598}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -81 for b, and 1598 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-81\right)±\sqrt{6561-4\times 1598}}{2}
Square -81.
t=\frac{-\left(-81\right)±\sqrt{6561-6392}}{2}
Multiply -4 times 1598.
t=\frac{-\left(-81\right)±\sqrt{169}}{2}
Add 6561 to -6392.
t=\frac{-\left(-81\right)±13}{2}
Take the square root of 169.
t=\frac{81±13}{2}
The opposite of -81 is 81.
t=\frac{94}{2}
Now solve the equation t=\frac{81±13}{2} when ± is plus. Add 81 to 13.
t=47
Divide 94 by 2.
t=\frac{68}{2}
Now solve the equation t=\frac{81±13}{2} when ± is minus. Subtract 13 from 81.
t=34
Divide 68 by 2.
t=47 t=34
The equation is now solved.
47=\sqrt{47+2}+40
Substitute 47 for t in the equation t=\sqrt{t+2}+40.
47=47
Simplify. The value t=47 satisfies the equation.
34=\sqrt{34+2}+40
Substitute 34 for t in the equation t=\sqrt{t+2}+40.
34=46
Simplify. The value t=34 does not satisfy the equation.
t=47
Equation t-40=\sqrt{t+2} has a unique solution.