Skip to main content
Solve for V_0
Tick mark Image
Solve for V_t
Tick mark Image

Similar Problems from Web Search

Share

t=\frac{1}{2}V_{t}-\frac{1}{2}V_{0}
Divide each term of V_{t}-V_{0} by 2 to get \frac{1}{2}V_{t}-\frac{1}{2}V_{0}.
\frac{1}{2}V_{t}-\frac{1}{2}V_{0}=t
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}V_{0}=t-\frac{1}{2}V_{t}
Subtract \frac{1}{2}V_{t} from both sides.
-\frac{1}{2}V_{0}=-\frac{V_{t}}{2}+t
The equation is in standard form.
\frac{-\frac{1}{2}V_{0}}{-\frac{1}{2}}=\frac{-\frac{V_{t}}{2}+t}{-\frac{1}{2}}
Multiply both sides by -2.
V_{0}=\frac{-\frac{V_{t}}{2}+t}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
V_{0}=V_{t}-2t
Divide t-\frac{V_{t}}{2} by -\frac{1}{2} by multiplying t-\frac{V_{t}}{2} by the reciprocal of -\frac{1}{2}.
t=\frac{1}{2}V_{t}-\frac{1}{2}V_{0}
Divide each term of V_{t}-V_{0} by 2 to get \frac{1}{2}V_{t}-\frac{1}{2}V_{0}.
\frac{1}{2}V_{t}-\frac{1}{2}V_{0}=t
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}V_{t}=t+\frac{1}{2}V_{0}
Add \frac{1}{2}V_{0} to both sides.
\frac{1}{2}V_{t}=\frac{V_{0}}{2}+t
The equation is in standard form.
\frac{\frac{1}{2}V_{t}}{\frac{1}{2}}=\frac{\frac{V_{0}}{2}+t}{\frac{1}{2}}
Multiply both sides by 2.
V_{t}=\frac{\frac{V_{0}}{2}+t}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
V_{t}=2t+V_{0}
Divide t+\frac{V_{0}}{2} by \frac{1}{2} by multiplying t+\frac{V_{0}}{2} by the reciprocal of \frac{1}{2}.