Solve for K
K\neq 0
t=\frac{325hr}{99}\text{ and }m\neq 0\text{ and }h\neq 0\text{ and }r\neq 0\text{ and }K\neq 0
Solve for h
h=\frac{99t}{325r}
K\neq 0\text{ and }m\neq 0\text{ and }t\neq 0\text{ and }r\neq 0
Share
Copied to clipboard
t=\frac{325Km}{\frac{99Km}{hr}}
Express 99\times \frac{Km}{hr} as a single fraction.
t=\frac{325Kmhr}{99Km}
Divide 325Km by \frac{99Km}{hr} by multiplying 325Km by the reciprocal of \frac{99Km}{hr}.
t=\frac{325Khr}{99K}
Cancel out m in both numerator and denominator.
\frac{325Khr}{99K}=t
Swap sides so that all variable terms are on the left hand side.
325Khr=t\times 99K
Variable K cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 99K.
325Khr=99Kt
Reorder the terms.
325Khr-99Kt=0
Subtract 99Kt from both sides.
\left(325hr-99t\right)K=0
Combine all terms containing K.
K=0
Divide 0 by 325hr-99t.
K\in \emptyset
Variable K cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}