Solve for t
t = -\frac{132 \sqrt{5}}{107} \approx -2.758513767
Assign t
t≔-\frac{132\sqrt{5}}{107}
Share
Copied to clipboard
t=\frac{-132}{\frac{107}{\sqrt{5}}}
Subtract 0 from -132 to get -132.
t=\frac{-132}{\frac{107\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{107}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
t=\frac{-132}{\frac{107\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
t=\frac{-132\times 5}{107\sqrt{5}}
Divide -132 by \frac{107\sqrt{5}}{5} by multiplying -132 by the reciprocal of \frac{107\sqrt{5}}{5}.
t=\frac{-132\times 5\sqrt{5}}{107\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{-132\times 5}{107\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
t=\frac{-132\times 5\sqrt{5}}{107\times 5}
The square of \sqrt{5} is 5.
t=\frac{-660\sqrt{5}}{107\times 5}
Multiply -132 and 5 to get -660.
t=\frac{-660\sqrt{5}}{535}
Multiply 107 and 5 to get 535.
t=-\frac{132}{107}\sqrt{5}
Divide -660\sqrt{5} by 535 to get -\frac{132}{107}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}