Solve for t
t=\frac{5}{2}-\frac{1}{v}
v\neq 0
Solve for v
v=-\frac{2}{2t-5}
t\neq \frac{5}{2}
Share
Copied to clipboard
2vt+2=5v
Multiply both sides of the equation by 2v, the least common multiple of v,2.
2vt=5v-2
Subtract 2 from both sides.
\frac{2vt}{2v}=\frac{5v-2}{2v}
Divide both sides by 2v.
t=\frac{5v-2}{2v}
Dividing by 2v undoes the multiplication by 2v.
t=\frac{5}{2}-\frac{1}{v}
Divide 5v-2 by 2v.
2vt+2=5v
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2v, the least common multiple of v,2.
2vt+2-5v=0
Subtract 5v from both sides.
2vt-5v=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\left(2t-5\right)v=-2
Combine all terms containing v.
\frac{\left(2t-5\right)v}{2t-5}=-\frac{2}{2t-5}
Divide both sides by 2t-5.
v=-\frac{2}{2t-5}
Dividing by 2t-5 undoes the multiplication by 2t-5.
v=-\frac{2}{2t-5}\text{, }v\neq 0
Variable v cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}