Skip to main content
Solve for s_1
Tick mark Image

Similar Problems from Web Search

Share

5s_{1}^{2}=\left(4-9,6\right)^{2}+\left(8-9,6\right)^{2}+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Multiply both sides of the equation by 5.
5s_{1}^{2}=\left(-5,6\right)^{2}+\left(8-9,6\right)^{2}+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Subtract 9,6 from 4 to get -5,6.
5s_{1}^{2}=31,36+\left(8-9,6\right)^{2}+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Calculate -5,6 to the power of 2 and get 31,36.
5s_{1}^{2}=31,36+\left(-1,6\right)^{2}+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Subtract 9,6 from 8 to get -1,6.
5s_{1}^{2}=31,36+2,56+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Calculate -1,6 to the power of 2 and get 2,56.
5s_{1}^{2}=33,92+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Add 31,36 and 2,56 to get 33,92.
5s_{1}^{2}=33,92+\left(-0,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Subtract 9,6 from 9 to get -0,6.
5s_{1}^{2}=33,92+0,36+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Calculate -0,6 to the power of 2 and get 0,36.
5s_{1}^{2}=34,28+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Add 33,92 and 0,36 to get 34,28.
5s_{1}^{2}=34,28+1,4^{2}+\left(16-9,6\right)^{2}
Subtract 9,6 from 11 to get 1,4.
5s_{1}^{2}=34,28+1,96+\left(16-9,6\right)^{2}
Calculate 1,4 to the power of 2 and get 1,96.
5s_{1}^{2}=36,24+\left(16-9,6\right)^{2}
Add 34,28 and 1,96 to get 36,24.
5s_{1}^{2}=36,24+6,4^{2}
Subtract 9,6 from 16 to get 6,4.
5s_{1}^{2}=36,24+40,96
Calculate 6,4 to the power of 2 and get 40,96.
5s_{1}^{2}=77,2
Add 36,24 and 40,96 to get 77,2.
s_{1}^{2}=\frac{77,2}{5}
Divide both sides by 5.
s_{1}^{2}=\frac{772}{50}
Expand \frac{77,2}{5} by multiplying both numerator and the denominator by 10.
s_{1}^{2}=\frac{386}{25}
Reduce the fraction \frac{772}{50} to lowest terms by extracting and canceling out 2.
s_{1}=\frac{\sqrt{386}}{5} s_{1}=-\frac{\sqrt{386}}{5}
Take the square root of both sides of the equation.
5s_{1}^{2}=\left(4-9,6\right)^{2}+\left(8-9,6\right)^{2}+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Multiply both sides of the equation by 5.
5s_{1}^{2}=\left(-5,6\right)^{2}+\left(8-9,6\right)^{2}+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Subtract 9,6 from 4 to get -5,6.
5s_{1}^{2}=31,36+\left(8-9,6\right)^{2}+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Calculate -5,6 to the power of 2 and get 31,36.
5s_{1}^{2}=31,36+\left(-1,6\right)^{2}+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Subtract 9,6 from 8 to get -1,6.
5s_{1}^{2}=31,36+2,56+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Calculate -1,6 to the power of 2 and get 2,56.
5s_{1}^{2}=33,92+\left(9-9,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Add 31,36 and 2,56 to get 33,92.
5s_{1}^{2}=33,92+\left(-0,6\right)^{2}+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Subtract 9,6 from 9 to get -0,6.
5s_{1}^{2}=33,92+0,36+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Calculate -0,6 to the power of 2 and get 0,36.
5s_{1}^{2}=34,28+\left(11-9,6\right)^{2}+\left(16-9,6\right)^{2}
Add 33,92 and 0,36 to get 34,28.
5s_{1}^{2}=34,28+1,4^{2}+\left(16-9,6\right)^{2}
Subtract 9,6 from 11 to get 1,4.
5s_{1}^{2}=34,28+1,96+\left(16-9,6\right)^{2}
Calculate 1,4 to the power of 2 and get 1,96.
5s_{1}^{2}=36,24+\left(16-9,6\right)^{2}
Add 34,28 and 1,96 to get 36,24.
5s_{1}^{2}=36,24+6,4^{2}
Subtract 9,6 from 16 to get 6,4.
5s_{1}^{2}=36,24+40,96
Calculate 6,4 to the power of 2 and get 40,96.
5s_{1}^{2}=77,2
Add 36,24 and 40,96 to get 77,2.
5s_{1}^{2}-77,2=0
Subtract 77,2 from both sides.
s_{1}=\frac{0±\sqrt{0^{2}-4\times 5\left(-77,2\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -77,2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s_{1}=\frac{0±\sqrt{-4\times 5\left(-77,2\right)}}{2\times 5}
Square 0.
s_{1}=\frac{0±\sqrt{-20\left(-77,2\right)}}{2\times 5}
Multiply -4 times 5.
s_{1}=\frac{0±\sqrt{1544}}{2\times 5}
Multiply -20 times -77,2.
s_{1}=\frac{0±2\sqrt{386}}{2\times 5}
Take the square root of 1544.
s_{1}=\frac{0±2\sqrt{386}}{10}
Multiply 2 times 5.
s_{1}=\frac{\sqrt{386}}{5}
Now solve the equation s_{1}=\frac{0±2\sqrt{386}}{10} when ± is plus.
s_{1}=-\frac{\sqrt{386}}{5}
Now solve the equation s_{1}=\frac{0±2\sqrt{386}}{10} when ± is minus.
s_{1}=\frac{\sqrt{386}}{5} s_{1}=-\frac{\sqrt{386}}{5}
The equation is now solved.