Solve for s
s=2\left(x-3\right)
Solve for x
x=\frac{s+6}{2}
Graph
Share
Copied to clipboard
s-4x+8=2-2x
Use the distributive property to multiply -4 by x-2.
s+8=2-2x+4x
Add 4x to both sides.
s+8=2+2x
Combine -2x and 4x to get 2x.
s=2+2x-8
Subtract 8 from both sides.
s=-6+2x
Subtract 8 from 2 to get -6.
s-4x+8=2-2x
Use the distributive property to multiply -4 by x-2.
s-4x+8+2x=2
Add 2x to both sides.
s-2x+8=2
Combine -4x and 2x to get -2x.
-2x+8=2-s
Subtract s from both sides.
-2x=2-s-8
Subtract 8 from both sides.
-2x=-6-s
Subtract 8 from 2 to get -6.
-2x=-s-6
The equation is in standard form.
\frac{-2x}{-2}=\frac{-s-6}{-2}
Divide both sides by -2.
x=\frac{-s-6}{-2}
Dividing by -2 undoes the multiplication by -2.
x=\frac{s}{2}+3
Divide -6-s by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}