Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

t\left(-t-1\right)
Factor out t.
-t^{2}-t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-\left(-1\right)±\sqrt{1}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-1\right)±1}{2\left(-1\right)}
Take the square root of 1.
t=\frac{1±1}{2\left(-1\right)}
The opposite of -1 is 1.
t=\frac{1±1}{-2}
Multiply 2 times -1.
t=\frac{2}{-2}
Now solve the equation t=\frac{1±1}{-2} when ± is plus. Add 1 to 1.
t=-1
Divide 2 by -2.
t=\frac{0}{-2}
Now solve the equation t=\frac{1±1}{-2} when ± is minus. Subtract 1 from 1.
t=0
Divide 0 by -2.
-t^{2}-t=-\left(t-\left(-1\right)\right)t
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and 0 for x_{2}.
-t^{2}-t=-\left(t+1\right)t
Simplify all the expressions of the form p-\left(-q\right) to p+q.