Solve for s (complex solution)
\left\{\begin{matrix}s=\frac{e^{2i\theta +i}+e^{-4i\theta +i}}{4\left(\theta e^{2\left(-i\theta +i\right)}+\theta +e^{2\left(-i\theta +i\right)}+1\right)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}+1\text{ and }4\theta e^{-2i\theta +2i}+4e^{-2i\theta +2i}+4\theta +4\neq 0\\s\in \mathrm{C}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}+1\text{ and }-e^{2i\theta +i}-e^{-4i\theta +i}=0\text{ and }4\theta e^{-2i\theta +2i}+4e^{-2i\theta +2i}+4\theta +4=0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=-\frac{\cos(\theta )\left(3\left(\sin(\theta )\right)^{2}-\left(\cos(\theta )\right)^{2}\right)}{4\left(\sin(1)\theta \sin(\theta )+\cos(1)\theta \cos(\theta )+\sin(1)\sin(\theta )+\cos(1)\cos(\theta )\right)}\text{, }&4\left(\sin(1)\theta \sin(\theta )+\cos(1)\theta \cos(\theta )+\sin(1)\sin(\theta )+\cos(1)\cos(\theta )\right)\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\frac{2\pi n_{1}+\pi +2}{2}\\s\in \mathrm{R}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\frac{\pi \left(2n_{2}+1\right)}{6}\text{ and }4\left(\sin(1)\theta \sin(\theta )+\cos(1)\theta \cos(\theta )+\sin(1)\sin(\theta )+\cos(1)\cos(\theta )\right)=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\frac{2\pi n_{1}+\pi +2}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
s\left(1+\theta \right)\cos(60^{0}-\theta )=\frac{1}{4}\cos(3\theta )
Calculate 60 to the power of 0 and get 1.
s\left(1+\theta \right)\cos(1-\theta )=\frac{1}{4}\cos(3\theta )
Calculate 60 to the power of 0 and get 1.
\left(s+s\theta \right)\cos(1-\theta )=\frac{1}{4}\cos(3\theta )
Use the distributive property to multiply s by 1+\theta .
s\cos(1-\theta )+s\theta \cos(1-\theta )=\frac{1}{4}\cos(3\theta )
Use the distributive property to multiply s+s\theta by \cos(1-\theta ).
\left(\cos(1-\theta )+\theta \cos(1-\theta )\right)s=\frac{1}{4}\cos(3\theta )
Combine all terms containing s.
\left(\theta \cos(1-\theta )+\cos(1-\theta )\right)s=\frac{\cos(3\theta )}{4}
The equation is in standard form.
\frac{\left(\theta \cos(1-\theta )+\cos(1-\theta )\right)s}{\theta \cos(1-\theta )+\cos(1-\theta )}=\frac{\cos(3\theta )}{4\left(\theta \cos(1-\theta )+\cos(1-\theta )\right)}
Divide both sides by \cos(1-\theta )+\theta \cos(1-\theta ).
s=\frac{\cos(3\theta )}{4\left(\theta \cos(1-\theta )+\cos(1-\theta )\right)}
Dividing by \cos(1-\theta )+\theta \cos(1-\theta ) undoes the multiplication by \cos(1-\theta )+\theta \cos(1-\theta ).
s=\frac{\cos(3\theta )}{4\left(\theta +1\right)\cos(1-\theta )}
Divide \frac{\cos(3\theta )}{4} by \cos(1-\theta )+\theta \cos(1-\theta ).
s\left(1+\theta \right)\cos(60^{0}-\theta )=\frac{1}{4}\cos(3\theta )
Calculate 60 to the power of 0 and get 1.
s\left(1+\theta \right)\cos(1-\theta )=\frac{1}{4}\cos(3\theta )
Calculate 60 to the power of 0 and get 1.
\left(s+s\theta \right)\cos(1-\theta )=\frac{1}{4}\cos(3\theta )
Use the distributive property to multiply s by 1+\theta .
s\cos(1-\theta )+s\theta \cos(1-\theta )=\frac{1}{4}\cos(3\theta )
Use the distributive property to multiply s+s\theta by \cos(1-\theta ).
\left(\cos(1-\theta )+\theta \cos(1-\theta )\right)s=\frac{1}{4}\cos(3\theta )
Combine all terms containing s.
\left(\theta \cos(1-\theta )+\cos(1-\theta )\right)s=\frac{\cos(3\theta )}{4}
The equation is in standard form.
\frac{\left(\theta \cos(1-\theta )+\cos(1-\theta )\right)s}{\theta \cos(1-\theta )+\cos(1-\theta )}=\frac{\cos(3\theta )}{4\left(\theta \cos(1-\theta )+\cos(1-\theta )\right)}
Divide both sides by \cos(1-\theta )+\theta \cos(1-\theta ).
s=\frac{\cos(3\theta )}{4\left(\theta \cos(1-\theta )+\cos(1-\theta )\right)}
Dividing by \cos(1-\theta )+\theta \cos(1-\theta ) undoes the multiplication by \cos(1-\theta )+\theta \cos(1-\theta ).
s=\frac{\cos(3\theta )}{4\left(\theta +1\right)\cos(1-\theta )}
Divide \frac{\cos(3\theta )}{4} by \cos(1-\theta )+\theta \cos(1-\theta ).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}