Evaluate
\left(2-3i\right)s+\left(\frac{46}{25}-\frac{28}{25}i\right)
Expand
\left(2-3i\right)s+\left(\frac{46}{25}-\frac{28}{25}i\right)
Share
Copied to clipboard
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\left(2-5i\right)
Multiply both numerator and denominator of \frac{2}{4-3i} by the complex conjugate of the denominator, 4+3i.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{4^{2}-3^{2}i^{2}}\left(2-5i\right)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{25}\left(2-5i\right)
By definition, i^{2} is -1. Calculate the denominator.
s\left(2-3i\right)+\frac{2\times 4+2\times \left(3i\right)}{25}\left(2-5i\right)
Multiply 2 times 4+3i.
s\left(2-3i\right)+\frac{8+6i}{25}\left(2-5i\right)
Do the multiplications in 2\times 4+2\times \left(3i\right).
s\left(2-3i\right)+\left(\frac{8}{25}+\frac{6}{25}i\right)\left(2-5i\right)
Divide 8+6i by 25 to get \frac{8}{25}+\frac{6}{25}i.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)i^{2}
Multiply complex numbers \frac{8}{25}+\frac{6}{25}i and 2-5i like you multiply binomials.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right)
By definition, i^{2} is -1.
s\left(2-3i\right)+\frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}
Do the multiplications in \frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right).
s\left(2-3i\right)+\frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i
Combine the real and imaginary parts in \frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}.
s\left(2-3i\right)+\left(\frac{46}{25}-\frac{28}{25}i\right)
Do the additions in \frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\left(2-5i\right)
Multiply both numerator and denominator of \frac{2}{4-3i} by the complex conjugate of the denominator, 4+3i.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{4^{2}-3^{2}i^{2}}\left(2-5i\right)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{25}\left(2-5i\right)
By definition, i^{2} is -1. Calculate the denominator.
s\left(2-3i\right)+\frac{2\times 4+2\times \left(3i\right)}{25}\left(2-5i\right)
Multiply 2 times 4+3i.
s\left(2-3i\right)+\frac{8+6i}{25}\left(2-5i\right)
Do the multiplications in 2\times 4+2\times \left(3i\right).
s\left(2-3i\right)+\left(\frac{8}{25}+\frac{6}{25}i\right)\left(2-5i\right)
Divide 8+6i by 25 to get \frac{8}{25}+\frac{6}{25}i.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)i^{2}
Multiply complex numbers \frac{8}{25}+\frac{6}{25}i and 2-5i like you multiply binomials.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right)
By definition, i^{2} is -1.
s\left(2-3i\right)+\frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}
Do the multiplications in \frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right).
s\left(2-3i\right)+\frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i
Combine the real and imaginary parts in \frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}.
s\left(2-3i\right)+\left(\frac{46}{25}-\frac{28}{25}i\right)
Do the additions in \frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}