Solve for s (complex solution)
\left\{\begin{matrix}s=\frac{x}{\epsilon }\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\s\in \mathrm{C}\text{, }&t=0\text{ and }\epsilon \neq 0\text{ and }x\neq 0\end{matrix}\right.
Solve for t (complex solution)
\left\{\begin{matrix}t=0\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\t\in \mathrm{C}\text{, }&s\epsilon \neq 0\text{ and }x=s\epsilon \end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=\frac{x}{\epsilon }\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\s\in \mathrm{R}\text{, }&t=0\text{ and }\epsilon \neq 0\text{ and }x\neq 0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=0\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\t\in \mathrm{R}\text{, }&s\epsilon \neq 0\text{ and }x=s\epsilon \end{matrix}\right.
Graph
Share
Copied to clipboard
\epsilon \times \frac{s}{x}t=t
Multiply both sides of the equation by \epsilon .
\frac{\epsilon s}{x}t=t
Express \epsilon \times \frac{s}{x} as a single fraction.
\frac{\epsilon st}{x}=t
Express \frac{\epsilon s}{x}t as a single fraction.
\epsilon st=tx
Multiply both sides of the equation by x.
t\epsilon s=tx
The equation is in standard form.
\frac{t\epsilon s}{t\epsilon }=\frac{tx}{t\epsilon }
Divide both sides by \epsilon t.
s=\frac{tx}{t\epsilon }
Dividing by \epsilon t undoes the multiplication by \epsilon t.
s=\frac{x}{\epsilon }
Divide tx by \epsilon t.
\epsilon \times \frac{s}{x}t=t
Multiply both sides of the equation by \epsilon .
\frac{\epsilon s}{x}t=t
Express \epsilon \times \frac{s}{x} as a single fraction.
\frac{\epsilon st}{x}=t
Express \frac{\epsilon s}{x}t as a single fraction.
\frac{\epsilon st}{x}-t=0
Subtract t from both sides.
\frac{\epsilon st}{x}-\frac{tx}{x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply t times \frac{x}{x}.
\frac{\epsilon st-tx}{x}=0
Since \frac{\epsilon st}{x} and \frac{tx}{x} have the same denominator, subtract them by subtracting their numerators.
\epsilon st-tx=0
Multiply both sides of the equation by x.
\left(\epsilon s-x\right)t=0
Combine all terms containing t.
\left(s\epsilon -x\right)t=0
The equation is in standard form.
t=0
Divide 0 by s\epsilon -x.
\epsilon \times \frac{s}{x}t=t
Multiply both sides of the equation by \epsilon .
\frac{\epsilon s}{x}t=t
Express \epsilon \times \frac{s}{x} as a single fraction.
\frac{\epsilon st}{x}=t
Express \frac{\epsilon s}{x}t as a single fraction.
\epsilon st=tx
Multiply both sides of the equation by x.
t\epsilon s=tx
The equation is in standard form.
\frac{t\epsilon s}{t\epsilon }=\frac{tx}{t\epsilon }
Divide both sides by \epsilon t.
s=\frac{tx}{t\epsilon }
Dividing by \epsilon t undoes the multiplication by \epsilon t.
s=\frac{x}{\epsilon }
Divide tx by \epsilon t.
\epsilon \times \frac{s}{x}t=t
Multiply both sides of the equation by \epsilon .
\frac{\epsilon s}{x}t=t
Express \epsilon \times \frac{s}{x} as a single fraction.
\frac{\epsilon st}{x}=t
Express \frac{\epsilon s}{x}t as a single fraction.
\frac{\epsilon st}{x}-t=0
Subtract t from both sides.
\frac{\epsilon st}{x}-\frac{tx}{x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply t times \frac{x}{x}.
\frac{\epsilon st-tx}{x}=0
Since \frac{\epsilon st}{x} and \frac{tx}{x} have the same denominator, subtract them by subtracting their numerators.
\epsilon st-tx=0
Multiply both sides of the equation by x.
\left(\epsilon s-x\right)t=0
Combine all terms containing t.
\left(s\epsilon -x\right)t=0
The equation is in standard form.
t=0
Divide 0 by s\epsilon -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}