Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

s^{2}\left(s-16\right)-4\left(s-16\right)
Do the grouping s^{3}-16s^{2}-4s+64=\left(s^{3}-16s^{2}\right)+\left(-4s+64\right), and factor out s^{2} in the first and -4 in the second group.
\left(s-16\right)\left(s^{2}-4\right)
Factor out common term s-16 by using distributive property.
\left(s-2\right)\left(s+2\right)
Consider s^{2}-4. Rewrite s^{2}-4 as s^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(s-16\right)\left(s-2\right)\left(s+2\right)
Rewrite the complete factored expression.