Skip to main content
Solve for s
Tick mark Image

Similar Problems from Web Search

Share

s^{2}-2s-3=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
s=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-3\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -2 for b, and -3 for c in the quadratic formula.
s=\frac{2±4}{2}
Do the calculations.
s=3 s=-1
Solve the equation s=\frac{2±4}{2} when ± is plus and when ± is minus.
\left(s-3\right)\left(s+1\right)<0
Rewrite the inequality by using the obtained solutions.
s-3>0 s+1<0
For the product to be negative, s-3 and s+1 have to be of the opposite signs. Consider the case when s-3 is positive and s+1 is negative.
s\in \emptyset
This is false for any s.
s+1>0 s-3<0
Consider the case when s+1 is positive and s-3 is negative.
s\in \left(-1,3\right)
The solution satisfying both inequalities is s\in \left(-1,3\right).
s\in \left(-1,3\right)
The final solution is the union of the obtained solutions.