Solve for c_1
\left\{\begin{matrix}c_{1}=\frac{s^{2}}{\sin(\theta )+\theta }\text{, }&\sin(\theta )+\theta \neq 0\\c_{1}\in \mathrm{R}\text{, }&s=0\text{ and }\sin(\theta )+\theta =0\end{matrix}\right.
Solve for s
s=\sqrt{c_{1}\left(\sin(\theta )+\theta \right)}
s=-\sqrt{c_{1}\left(\sin(\theta )+\theta \right)}\text{, }\left(c_{1}\leq 0\text{ or }\sin(\theta )+\theta \geq 0\right)\text{ and }\left(c_{1}\geq 0\text{ or }\sin(\theta )+\theta \leq 0\right)
Graph
Share
Copied to clipboard
s^{2}=c_{1}\theta +c_{1}\sin(\theta )
Use the distributive property to multiply c_{1} by \theta +\sin(\theta ).
c_{1}\theta +c_{1}\sin(\theta )=s^{2}
Swap sides so that all variable terms are on the left hand side.
\left(\theta +\sin(\theta )\right)c_{1}=s^{2}
Combine all terms containing c_{1}.
\left(\sin(\theta )+\theta \right)c_{1}=s^{2}
The equation is in standard form.
\frac{\left(\sin(\theta )+\theta \right)c_{1}}{\sin(\theta )+\theta }=\frac{s^{2}}{\sin(\theta )+\theta }
Divide both sides by \theta +\sin(\theta ).
c_{1}=\frac{s^{2}}{\sin(\theta )+\theta }
Dividing by \theta +\sin(\theta ) undoes the multiplication by \theta +\sin(\theta ).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}