Skip to main content
Solve for s
Tick mark Image

Similar Problems from Web Search

Share

2s^{2}=\left(41,7+11,1\right)\times 35
Multiply both sides of the equation by 2.
2s^{2}=52,8\times 35
Add 41,7 and 11,1 to get 52,8.
2s^{2}=1848
Multiply 52,8 and 35 to get 1848.
s^{2}=\frac{1848}{2}
Divide both sides by 2.
s^{2}=924
Divide 1848 by 2 to get 924.
s=2\sqrt{231} s=-2\sqrt{231}
Take the square root of both sides of the equation.
2s^{2}=\left(41,7+11,1\right)\times 35
Multiply both sides of the equation by 2.
2s^{2}=52,8\times 35
Add 41,7 and 11,1 to get 52,8.
2s^{2}=1848
Multiply 52,8 and 35 to get 1848.
2s^{2}-1848=0
Subtract 1848 from both sides.
s=\frac{0±\sqrt{0^{2}-4\times 2\left(-1848\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -1848 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\times 2\left(-1848\right)}}{2\times 2}
Square 0.
s=\frac{0±\sqrt{-8\left(-1848\right)}}{2\times 2}
Multiply -4 times 2.
s=\frac{0±\sqrt{14784}}{2\times 2}
Multiply -8 times -1848.
s=\frac{0±8\sqrt{231}}{2\times 2}
Take the square root of 14784.
s=\frac{0±8\sqrt{231}}{4}
Multiply 2 times 2.
s=2\sqrt{231}
Now solve the equation s=\frac{0±8\sqrt{231}}{4} when ± is plus.
s=-2\sqrt{231}
Now solve the equation s=\frac{0±8\sqrt{231}}{4} when ± is minus.
s=2\sqrt{231} s=-2\sqrt{231}
The equation is now solved.