Solve for s (complex solution)
s=\frac{10t}{1-t^{2}}
t\neq 1\text{ and }t\neq -1
Solve for s
s=\frac{10t}{1-t^{2}}
|t|\neq 1
Solve for t
\left\{\begin{matrix}t=-\frac{\sqrt{s^{2}+25}+5}{s}\text{; }t=\frac{\sqrt{s^{2}+25}-5}{s}\text{, }&s\neq 0\\t=0\text{, }&s=0\end{matrix}\right.
Share
Copied to clipboard
s-st^{2}=10t
Subtract st^{2} from both sides.
-st^{2}+s=10t
Reorder the terms.
\left(-t^{2}+1\right)s=10t
Combine all terms containing s.
\left(1-t^{2}\right)s=10t
The equation is in standard form.
\frac{\left(1-t^{2}\right)s}{1-t^{2}}=\frac{10t}{1-t^{2}}
Divide both sides by -t^{2}+1.
s=\frac{10t}{1-t^{2}}
Dividing by -t^{2}+1 undoes the multiplication by -t^{2}+1.
s-st^{2}=10t
Subtract st^{2} from both sides.
-st^{2}+s=10t
Reorder the terms.
\left(-t^{2}+1\right)s=10t
Combine all terms containing s.
\left(1-t^{2}\right)s=10t
The equation is in standard form.
\frac{\left(1-t^{2}\right)s}{1-t^{2}}=\frac{10t}{1-t^{2}}
Divide both sides by -t^{2}+1.
s=\frac{10t}{1-t^{2}}
Dividing by -t^{2}+1 undoes the multiplication by -t^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}