Solve for n
n=\frac{3}{4-3s}
s\neq \frac{4}{3}
Solve for s
s=\frac{4}{3}-\frac{1}{n}
n\neq 0
Share
Copied to clipboard
s\times 6n=6n+3n\times 2+6n\times \frac{1}{3}+6n\left(-1\right)-6
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6n, the least common multiple of 2,3,n.
s\times 6n=6n+6n+6n\times \frac{1}{3}+6n\left(-1\right)-6
Multiply 3 and 2 to get 6.
s\times 6n=12n+6n\times \frac{1}{3}+6n\left(-1\right)-6
Combine 6n and 6n to get 12n.
s\times 6n=12n+2n+6n\left(-1\right)-6
Multiply 6 and \frac{1}{3} to get 2.
s\times 6n=14n+6n\left(-1\right)-6
Combine 12n and 2n to get 14n.
s\times 6n=14n-6n-6
Multiply 6 and -1 to get -6.
s\times 6n=8n-6
Combine 14n and -6n to get 8n.
s\times 6n-8n=-6
Subtract 8n from both sides.
\left(s\times 6-8\right)n=-6
Combine all terms containing n.
\left(6s-8\right)n=-6
The equation is in standard form.
\frac{\left(6s-8\right)n}{6s-8}=-\frac{6}{6s-8}
Divide both sides by 6s-8.
n=-\frac{6}{6s-8}
Dividing by 6s-8 undoes the multiplication by 6s-8.
n=-\frac{3}{3s-4}
Divide -6 by 6s-8.
n=-\frac{3}{3s-4}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}