Skip to main content
Solve for F
Tick mark Image
Solve for E
Tick mark Image

Similar Problems from Web Search

Share

s=\left(1+\frac{F}{2048}\right)\times 2^{E-16}
Calculate 2 to the power of 11 and get 2048.
s=2^{E-16}+\frac{F}{2048}\times 2^{E-16}
Use the distributive property to multiply 1+\frac{F}{2048} by 2^{E-16}.
s=2^{E-16}+\frac{F\times 2^{E-16}}{2048}
Express \frac{F}{2048}\times 2^{E-16} as a single fraction.
2^{E-16}+\frac{F\times 2^{E-16}}{2048}=s
Swap sides so that all variable terms are on the left hand side.
\frac{F\times 2^{E-16}}{2048}=s-2^{E-16}
Subtract 2^{E-16} from both sides.
F\times 2^{E-16}=2048s-2048\times 2^{E-16}
Multiply both sides of the equation by 2048.
2^{E-16}F=2048s-2048\times 2^{E-16}
The equation is in standard form.
\frac{2^{E-16}F}{2^{E-16}}=\frac{-\frac{2^{E}}{32}+2048s}{2^{E-16}}
Divide both sides by 2^{E-16}.
F=\frac{-\frac{2^{E}}{32}+2048s}{2^{E-16}}
Dividing by 2^{E-16} undoes the multiplication by 2^{E-16}.
F=\frac{2048\left(65536s-2^{E}\right)}{2^{E}}
Divide 2048s-\frac{2^{E}}{32} by 2^{E-16}.