Solve for a
\left\{\begin{matrix}a=-\frac{2\left(tv_{0}+s_{0}-s\right)}{t}\text{, }&t\neq 0\\a\in \mathrm{R}\text{, }&s=s_{0}\text{ and }t=0\end{matrix}\right.
Solve for s
s=\frac{at}{2}+tv_{0}+s_{0}
Quiz
Linear Equation
5 problems similar to:
s = \frac { a } { 2 } \cdot t + v _ { 0 } \cdot t + s _ { 0 }
Share
Copied to clipboard
s=\frac{at}{2}+v_{0}t+s_{0}
Express \frac{a}{2}t as a single fraction.
\frac{at}{2}+v_{0}t+s_{0}=s
Swap sides so that all variable terms are on the left hand side.
\frac{at}{2}+s_{0}=s-v_{0}t
Subtract v_{0}t from both sides.
\frac{at}{2}=s-v_{0}t-s_{0}
Subtract s_{0} from both sides.
at=2s-2v_{0}t-2s_{0}
Multiply both sides of the equation by 2.
ta=2s-2s_{0}-2tv_{0}
The equation is in standard form.
\frac{ta}{t}=\frac{2s-2s_{0}-2tv_{0}}{t}
Divide both sides by t.
a=\frac{2s-2s_{0}-2tv_{0}}{t}
Dividing by t undoes the multiplication by t.
a=\frac{2\left(s-s_{0}-tv_{0}\right)}{t}
Divide 2s-2v_{0}t-2s_{0} by t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}