Solve for r
r=125+\frac{125}{z}
z\neq 0
Solve for z
z=\frac{125}{r-125}
r\neq 125
Share
Copied to clipboard
rz=125+125z
Multiply both sides of the equation by 25.
zr=125z+125
The equation is in standard form.
\frac{zr}{z}=\frac{125z+125}{z}
Divide both sides by z.
r=\frac{125z+125}{z}
Dividing by z undoes the multiplication by z.
r=125+\frac{125}{z}
Divide 125+125z by z.
rz=125+125z
Multiply both sides of the equation by 25.
rz-125z=125
Subtract 125z from both sides.
\left(r-125\right)z=125
Combine all terms containing z.
\frac{\left(r-125\right)z}{r-125}=\frac{125}{r-125}
Divide both sides by r-125.
z=\frac{125}{r-125}
Dividing by r-125 undoes the multiplication by r-125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}