Evaluate
\frac{261}{4}+\frac{1}{4}i=65.25+0.25i
Real Part
\frac{261}{4} = 65\frac{1}{4} = 65.25
Share
Copied to clipboard
65+\sqrt{\frac{1}{8}i}
Divide i by 8 to get \frac{1}{8}i.
65+\left(\frac{1}{4}+\frac{1}{4}i\right)
Calculate the square root of \frac{1}{8}i and get \frac{1}{4}+\frac{1}{4}i.
65+\frac{1}{4}+\frac{1}{4}i
Combine the real and imaginary parts in numbers 65 and \frac{1}{4}+\frac{1}{4}i.
\frac{261}{4}+\frac{1}{4}i
Add 65 to \frac{1}{4}.
Re(65+\sqrt{\frac{1}{8}i})
Divide i by 8 to get \frac{1}{8}i.
Re(65+\left(\frac{1}{4}+\frac{1}{4}i\right))
Calculate the square root of \frac{1}{8}i and get \frac{1}{4}+\frac{1}{4}i.
Re(65+\frac{1}{4}+\frac{1}{4}i)
Combine the real and imaginary parts in numbers 65 and \frac{1}{4}+\frac{1}{4}i.
Re(\frac{261}{4}+\frac{1}{4}i)
Add 65 to \frac{1}{4}.
\frac{261}{4}
The real part of \frac{261}{4}+\frac{1}{4}i is \frac{261}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}